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ABSTRACT

Synonymous mutations, which do not alter the encoded amino acid, have been 
routinely assumed to be ‘neutral’ and would have no effect on phenotype or fitness. 
Yet increasing observations have emerged to overturn this conventional concept. 
However, convicted elucidation of how synonymous mutations exert biological 
consequences in oncogenesis is still lacking. By performing systematic analysis of 
the TNF-α signaling network model, we identify the critical dose which separates the 
cell survival and apoptosis regions and define the sensitive parameters with single-
parameter sensitivity analysis. Combining with the cancer-related mutation spectra 
obtained from 9 cancers, our results hint that, similar as missense and nonsense 
mutations, synonymous mutations are also strongly correlated with the parameter 
sensitivity of the critical dose, providing possible causal mechanism of the mutations 
in cancer development. Based on such a correlation, we furthermore dissect that 
members of caspases family proteases (caspase3, 6, 8) could jointly inhibit NFκB 
activation, providing efficient pro-apoptotic behavior. Thus, we argue that apoptosis 
module could suppress survival module through negative feedback of caspases family 
on NFκB.

INTRODUCTION

As a conundrum, cancer is one of the most 
intensively studied biological phenomena. In 2011, 
Weinberg and Hanahan suggested there are 10 hallmarks 
for cancer [1]. Manifestation with these hallmarks, an 
important origin of cancerogenesis is somatic gene 
mutations [2]. Abundant genomic alterations in cancer 
genomes have been identified through the high-throughput 
whole-genome sequencing and massively parallel analyses 
[3, 4]. In cancer research, coding mutations that change 
the amino acid sequence are therefore the historically 
main efforts [5]. Synonymous mutations, which change 
the sequence of a gene without directly altering the amino 
acid composition of the encoded proteins, have been 
routinely assumed to be ‘neutral’ and would have no effect 
on phenotype or fitness, let alone induce oncogenesis over 

the past few decades. Nevertheless, this opinion has been 
in retreat [6–9].

Accumulating evidences began to suggest that 
synonymous mutations could apparently have some 
biological functional consequences. For example, Cartegni 
et al. [10] proposed that synonymous mutations could 
result in aberrant mRNA splicing. Kimchi et al. [11] 
demonstrated that synonymous coding Single Nucleotide 
Polymorphism (sSNPs) could affect protein conformation. 
In addition, sSNPs could also influence mRNA stability 
[12] and thus protein functions, which may lead to human 
diseases. A broad survey of disease-SNP associations 
indicated that non-synonymous SNPs and synonymous 
SNPs have a similar probability and a statistically 
equivalent effect size of disease association [13]. Acting 
as driver mutations [14], synonymous mutations may also 
contribute to human cancer [15, 16].
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Despite the opinion has been overturned, the 
mechanism of synonymous mutations in cancer 
development is not unique [17]. Or more specifically, by 
now the experimental approaches to identify and validate 
these changes could not provide direct evidence for the 
mechanisms suggested. Sauna et al. [18] clearly pointed 
out that, considering the technical limitations, it is hard 
for current experiments to confidently demonstrate the 
mechanism by which even one synonymous mutation 
could cause cancer. Therefore, understanding the causal 
link between synonymous mutations and cancer initiation 
is a significant conundrum.

Apoptosis resistant with unexpected survival ability 
is one of the main hallmarks of cancer cells. The cell life-
or-death decision is mainly governed by two modules, 
the survival and the apoptosis modules. Nuclear factor 
kappa B (NFκB), the core protein of the survival module, 
regulates cell survival through inducing the expression of 
numerous anti-apoptotic genes, such as FLICE-inhibitory 
protein (FLIP) and X chromosome-linked IAP (XIAP). 
FLIP, which contains a catalytically inactive caspase-
like domain, interferes with the activation of caspase8 
[19], an apoptotic initiator caspase; while XIAP inhibits 
caspase3, an apoptotic executioner caspase, through its 
second baculoviral IAP repeat (BIR) domain and NH2-
linker [20]. Consequently, NFκB activation suppresses 
apoptosis in oncogenesis and tumour progression. 
Specifically, the over-expressed NFκB will function as 
a tumor promoter, while the loss-expressed NFκB will 
act as a tumor suppressor [21]. Furthermore, Nakanishi 
et al. [22] proposed the implication of NFκB inhibitors 
as sensitizers to anticancer drugs. Although the mutation-
induced oncogenesis mechanism on how the survival 
module suppresses the apoptosis module has been largely 
studied, clinically more crucial issues are whether and 
how the apoptosis could compete or mediate the survival 
module, thus overcoming the anti-apoptotic effect and 
guaranteeing the apoptosis process to take place easily.

We therefore employ the approach of network 
modeling to investigate the possible mechanism of 
synonymous mutations in cancer development. In detail, 
we discuss the signaling pathway of tumor necrosis factor 
alpha (TNF-α), which can direct its signals down the 
survival and apoptosis modules. Ahead of this analysis, 
the signaling pathway should correctly catch the protein-
protein interactions (PPIs). Nonetheless, though various 
high-throughput techniques have been applied to study 
PPIs in experiments [23-26], the reliability of the data is 
often concerned as several experimental limitations are 
presented. The PPIs are often activated under specific 
conditions in tissues while the experimental data are 
often gotten on certain condition or certain cell type [27, 
28]. The large-scale screens treat proteins and genes as 
simple monolithic nodes in a pathway [29, 30] and the 
findings which were frequently based on the experiment 
with over-expression, loss-expression or dropout proteins 

[31] should be taken with caution as well. Moreover, 
false interaction data may also be suggested due to the 
limitations of analysis process in experiment [32, 33]. 
Hence, with possible missing and spurious PPIs, current 
data generated by these high-throughput experiments 
could partially reveal the biologically realistic picture of 
the cell.

Accordingly in this study, we aim to address the 
following two questions: (1) what mechanism could be 
for synonymous mutations in cancer development; (2) 
whether there are some possible additional PPIs in the 
signaling pathway, particularly between survival and 
apoptosis modules. By simulating the dynamic behavior 
of the TNF-α modulated signaling network, we determine 
the critical dose of TNF-α which separates the regions 
of cell survival and apoptosis. The critical dose reflects 
the threshold for cell apoptosis. The sensitivity of each 
model parameter can be determined by its modulation 
on the critical dose. Then, based on the cancer-related 
mutation database, we find a good correlation between 
the model parameter sensitivity and the corresponding 
mutated oncogenic genes. Such correlations indicate that, 
similar to missense and nonsense mutations, synonymous 
mutations could also change the dynamical parameters 
of the corresponding proteins in signaling network, 
and thereby increase the critical dose of TNF-α for cell 
death, ultimately facilitating oncogenesis and tumour 
progression. Furthermore, we also provide an approach 
to predict the possible feedback loops by integrating 
signaling network-based dynamic modeling with 
mutations spectra analysis. As a result, our comparison 
suggests that members of caspases family proteases 
(caspase3, 6, 8) could jointly provide negative feedback 
loops on NFκB, which is an efficient pro-apoptotic 
feedback mechanism of apoptosis versus survival 
modules.

RESULTS

Cell-fate governed by TNF-α signaling pathway

A schematic representation of the regulatory network 
model is depicted in Figure 1. To qualitatively reflect the 
dynamic behavior of the regulatory network, we first 
present an overview of the network model in response 
to three typical doses of sustained stimuli (10-3, 10-2 and 
10-1amol) of TNF-α. The time courses of four key protein 
concentrations are plotted in Figure 2. Our simulation 
shows that both the formation of Complex I (Figure 2a) and 
Complex II (Figure 2b) exhibit a dose-dependent kinetics. 
For a low TNF-α dose (10-3 amol), the concentrations of 
Complexes I and II keep low and the regulatory network 
barely shows any response (black lines). While a high dose 
of 10-2 amol leads to a rapid formation of the complexes 
(red lines). With an increase of TNF-α dose, the maximum 
concentrations of the complexes show a continuous 
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Figure 1: Schematic representation of the TNF-α-mediated cell-fate decision network. Upon TNF-α stimulation, it binds 
with the receptor, TNFR1, and subsequently activates the survival and apoptosis modules. The core part of the survival module is NF-κB, 
which induces a variety of anti-apoptotic factors, such as FLIP and XIAP. The caspase8 and caspase3 are the major initiator and executioner 
in the apoptosis module. Arrows and bars indicate activation/transcription and inhibition, respectively.

Figure 2: Sensitivity of the core protein activation to TNF-α stimulation. The time evolution of Complex I a. Complex II b. 
NF-κB c. and Caspase3 d. respectively. Black, red and blue lines represent sustained stimulus with 0.001, 0.01 and 0.1 amol, respectively.
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increase. As defined by the model, the formation of 
Complex I naturally occurs earlier than that of Complex II, 
which is in agreement with the experimental observations 
[34]. Besides, Figure 2b indicates that the formation of 
Complex II can be initialized only several minutes after 
the loading of TNF-α stimulation.

As shown in Figure 2c, TNF-α activates NFκB, 
the core protein of survival module, via a rapid, dose-
dependent kinetics as well. Then, activated NFκB 
translocates into the nucleus to alter the anti-apoptotic 
genes expression, such as FLIP and XIAP. Such process 
has been proved in skeletal muscle [35]. Experimental 
studies have revealed that most cells survive at low dose 
of TNF-α, while high dose of TNF-α induces apoptosis 
[36]. Similar behavior can also be observed in the 
model, as shown in Figure 2d. Here, the concentration 
of caspase3 which is the main executioner in apoptosis 
module is considered to reflect whether apoptosis is 
triggered. At a low TNF-α dose (10-3 amol), the caspase3 
concentration remains at low level (black line), suggesting 
that apoptosis has not been triggered. While a high TNF-α 
dose (10-2amol) leads to the activation of caspase3. 
The concentration of activated caspase3 increases to a 
high level rapidly after a delay of few hours (red line), 
indicating the occurrence of apoptotic process in the cell. 
Additionally, in Figure 2d, compared with the 10-2 amol 
stimulus, a 0.1 amol stimulus leads to an earlier activation 
of caspase3 (blue line), suggesting that the caspase3 
cleavage is faster upon stronger stimulation. Such a result 
is also in agreement with the experimental observations by 
Rehm et al. [37].

Parameter variation and the critical dose

Single-cell imaging studies have demonstrated that 
activation of execution-caspases is a rapid, all-or-none 
process while apoptosis occurs [38]. With the quantitative 
approach of network modeling, mathematical simulations 
have attested that both XIAP and cytochrome c released 
from mitochondria control this all-or-none response [39, 
40]. Whether the stimulation of TNF-α controls the all-
or-none response of casapse3 has not been conducted. To 
deal with such a dubiousness, the reliable range of TNF-α 
stimulation dose in the network should be determined  
first. In vitro experiments, the stimulation dose of TNF-α 
is typically in the range of 10-100 ng/mL (0.6-6 nmol/L) 
[34] and then the corresponding range is considered to be 
0-10-2 amol for TNF-α in our model.

Treating the TNF-α dose as the control parameter, 
the responding steady-state of activated caspase3 
concentration is presented in Figure 3a. Similar to 
experimental observation, the modeling signaling network 
exhibits a rapid, all-or-none behavior for caspase3. Starting 
from the resting state, the activated caspase3 concentration 
remains low with low TNF-α dose. However, when TNF-α 
dose increases beyond a critical dose (about 0.004 amol), 

the activated caspase3 concentration switches to a high 
steady state, indicating the occurrence of apoptosis in the 
cell. As a result, the critical dose of TNF-α reflects the 
threshold of cell death. At the low dose region ( < 0.004 
amol), the concentration of activated caspase3 remains 
low and the cell is in the survival state (green area in 
Figure 3a). However, at the high dose region ( ≥ 0.004 
amol), the cell is driven to the apoptosis state with a high 
concentration of activated caspase3 (red area in Figure 3a).

Obviously, in regulatory network, the regions of 
TNF-α for cell survival and apoptosis are separated by the 
critical dose, and such a critical dose could be significantly 
affected by certain parameters variation [41]. As an 
example given in Figure 3b, compared with the standard 
model, the 20% decrease of the caspase8 production rate 
(ka_68) in the network shifts the critical dose to the right. 
As a result, the survival region is increased and a strong 
TNF-α stimulation is required for initiating apoptosis. 
If ka_68 is further decreased by 40%, high level of 
caspase3 can never be reached even at extremely high 
dose of TNF-α. Then, cell apoptosis will not occur in 
this case. This result is consistent with the Western blot 
experimental observations [42], which demonstrated that 
caspase3 is a major target of caspase8 and cells can escape 
from apoptosis with inhibited caspase8. The cell with such 
an inhibited caspase8 condition provides possible chance 
to avoid apoptosis, which may facilitate oncogenesis and 
tumour progression. Actually, caspase8 gene expression 
is frequently silenced and hypermethylation of regulatory 
sequences has been detected in multiple cancers [43–45]. 
Taken together, the changes of cell condition that is 
embodied by the changes of model parameters, such as the 
decreased caspase8 production rate, could consequently 
shift the critical dose, resulting in the resistance of cell 
death and possible incentive for oncogenesis [46, 47].

Parameter sensitivity and cancer-related 
mutations

Analysis of parameter changes has been successfully 
employed for investigating the correlations between gene 
mutations and oncogenesis. For instance, Stites et al. 
[48] investigated the common oncogenic mutations in 
the Ras signaling network by evaluating the responses of 
the steady-state concentrations to parameter variations. 
Furthermore, Chen et al. [49] recently found a strong 
correlation between parameter sensitivity and oncogenic 
mutations in the p53-induced apoptosis signaling network. 
This study demonstrated that parameters that significantly 
affect the network bifurcation point correspond to genes 
with high-frequency oncogenic mutations.

In our regulatory network, certain parameter change, 
such as the decreased caspase8 production rate (ka_68) 
in Figure 3b, could significantly undermine the apoptotic 
function, which possibly facilitate oncogenesis. Therefore, 
we have an assumption that variations of the sensitive 
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parameters which can significantly increase the critical 
dose render the abnormal apoptotic function of signaling 
network and likely cause cancer. Thus, as cancer is a 
genetic disease, the sensitive parameters should typically 
correspond to the mutated genes in cancers.

To explore the possible relationship between 
parameter sensitivity of the TNF-α signaling network 
model and the cancer-related mutations, we first select 
a subset of the parameters which are associated with the 
core proteins in the network, such as IKK degradation rate 
(ka_40), NFκB-IκBα complex degradation rate (ka_41), 
caspase3 activation rate (ka_79) and caspase8 activation 
rate (ka_80). Parameter sensitivity spectrum of the 
selected core proteins is plotted in Figure 4a, in which the 
sensitive and insensitive parameters are marked in red and 
green respectively. Secondly, we collect the cancer-related 
point mutations (missense, synonymous and nonsense 
mutations) from the upper aerodigestive tract cancer 
in COSMIC and convert to Boolean variables. We then 
compare the parameter sensitivity spectrum with the three 
point mutations in the corresponding genes, respectively. 
As shown in Figure 4a, almost all the sensitive parameters 
(marked by red stripes) are frequently corresponding to 

mutated oncogenic genes, but the insensitive parameters 
(marked by green stripes) are less corresponding to gene 
mutations. The insensitive parameters, which can hardly 
increase the critical dose of TNF-α to induce apoptosis, 
can hardly cause cancer and therefore should frequently 
correspond to genes without mutations. This result 
supports our assumption that parameters which render 
the network apoptotic dysfunction are strongly correlated 
with cancer-related mutations. And the result is basically 
consistent with the observation that the parameter 
sensitivity has an intimate relativity with oncogenic 
mutations [49].

As we known, somatic missense and nonsense 
mutations are well-recognized as the mainly cause of 
cancer, and the parameters change-induced apoptotic 
dysfunction in network could be arisen from this two 
point mutations. Recently, Zhao et al. [50] successfully 
dissected the causal mechanism of missense mutations-
induced oncogenesis by conducting the parameter 
sensitivity analysis. Whereas, whether and what the causal 
mechanisms of synonymous mutations could induce 
oncogenesis is still an open issue. Here, in our study, 
through measuring the correlation between parameter 

Figure 3: Steady-state behavior of caspase3 responding to TNF-α stimulation. a. Steady-state curve of caspase3 for the 
signaling network responding to TNF-α shows a critical dose which can separate the regions of cell survival (blue region) and apoptosis 
(red region). b. Reducing the parameter ka_86 shifts the critical dose to the right, indicating an increasing apoptosis threshold. Black line 
represents the standard ka_86 without any change; red with 20% decrease; blue with 40% decrease. The blue dashed lines indicate the 
switch of steady-state of the activated caspase3.
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sensitivity spectrum and the mutated genes, we can 
evaluate the association of the three point mutations, 
particularly for synonymous mutations, with cancer.

The achieved sensitivity spectrum of all para-
meters and the collected corresponding mutated gene 
spectrum are presented in the Supporting Information 
(Supplementary Table S1). As the somatic nonsense and 
missense mutations are definitely linked with oncogenesis, 
we first calculate the Hamming distance (HD) between 
the parameter sensitivity spectrum and the spectra of 
these two mutations, resulting in the value of 52 and 63, 
respectively. Subsequently, we calculate the HD between 
the parameter sensitivity spectrum and the spectrum of 
synonymous mutations, resulting in a surprisingly small 
value of 40. These results clearly indicate that, compared 
with nonsense and missense mutations, synonymous 
mutations indeed exhibit a better correlation with the 
parameter sensitivity of the signaling network.

Besides the upper aerodigestive tract cancer, more 
systematic analysis are conducted by collecting the three 
point mutations spectra from other 8 different cancers with 

high mutation rate, including liver, oesophagus, ovary, 
pancreas, thyroid, breast, haematopoietic and lymphoid 
tissue and kidney. Likewise, we calculate the HDs between 
the parameter sensitivity spectrum and the corresponding 
gene mutation spectra with the three point mutations for 
these 8 different cancers. As shown in Figure 4b, similar 
correlations with the parameter sensitivity spectrum are 
presented among the three point mutations. These results 
indicate that, similar as missense and nonsense mutations, 
synonymous mutations are also likely to be associated 
with parameter changes-induced network apoptotic 
dysfunction.

Strictly speaking, cancer is a consequence of 
combined action of several somatic mutation types. To 
further validate that synonymous mutations could be 
functional in apoptotic dysfunction, we then evaluate the 
correlation between the parameter sensitivity spectrum 
and the genes with combined action of mutations. Here, 
in the case of combined action of two mutation types, the 
gene is marked as “1” if at least one type mutation occurs; 
otherwise, marked as “0”. While for the combined action 

Figure 4: Comparison between parameter sensitivity and the corresponding cancer-related mutations. a. Comparison 
between sensitivity spectrum of subset parameters and the corresponding genes spectra for three point mutations of upper aerodigestive 
tract cancer. Sensitive and insensitive parameters are marked by red and green stripes, respectively. The numbers in the frame are the 
Boolean variable which represents the genes with mutations (1) or without mutation (0). b. Calculated HDs between parameter sensitivity 
spectrum of all parameters and the genes spectra for three point mutations of 9 cancers. The red, blue and yellow bars represent the HDs 
corresponding to nonsense, missense and synonymous mutations, respectively. c. Calculated HDs between parameter sensitivity spectrum 
of all parameters and the genes spectra with combined action of the two and three mutations, respectively. The black bars correspond to the 
combined action of missense and nonsense; while the gray bars correspond to the three point mutations.
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of three mutation types, the binarizing rule is that the gene 
is marked as “1” if at least two types show mutations.

We first consider the combined action of nonsense 
and missense mutations which have been corroborated in 
oncogenesis, and calculate the HDs between the parameter 
sensitivity spectrum and the corresponding mutated genes 
for the 9 different cancers. Then, we calculate the HDs 
in the case of the three point mutations combined action. 
As shown in Figure 4c, the HDs with two and three point 
mutations for the 9 different cancers are marked in black 
and gray, respectively. Remarkably, the comparison shows 
that, after considering synonymous mutations, the mutated 
genes show a better correlation with the parameter 
sensitivity spectrum particularly for the first 6 cancers, 
while the other 3 cancers show similar correlation. These 
results reveal that, besides the nonsense and missense 
mutations, the functional consequences of synonymous 
mutations in cancer development cannot be ignored.

Furthermore, for the combined action of three 
mutation types, we also discuss the case that the 
binarizing rule is that the gene is marked as “1” if at least 
one types show mutations. The comparison results are 
presented in Supplementary Figure S1. Even with such 
a binarizing rule, we can still draw the same conclusion 
that synonymous mutations could also correspond to the 
sensitive parameters in the regulatory network and disrupt 
the apoptotic function, ultimately facilitating oncogenesis 
and tumour progression.

Caspases act as inhibitors of NFκB activation

Based on above analysis, we propose that the 
mutated oncogenic genes, particularly for synonymous 
mutations show a good correlation with parameter 
sensitivity of signaling network. Nevertheless, there 
are some exceptions, resulting in a certain value of HD.  
As shown in Figure 5a and 5b, the parameter sensitivity 
spectrum of the network model and the corresponding 
gene spectrum with combined action of three point 
mutations are plotted. We separated the parameter 
sensitivity spectrum into two subsets, one for parameter 
sensitivity consistent with the mutated genes (Figure 5a) 
and the other one for inconsistent parameters (Figure 5b). 
Here for the combined action of three mutations, the 
binarizing rule is that the gene is marked as “1” if at least 
two types show mutations.

Such inconsistency might result from several 
factors. One factor is that a single gene mutation may not 
be enough to cause cancer. The multiple gene mutations 
could be essential in most cases [51]. Therefore, to 
discuss the cooperative effect of multiple gene mutations, 
we change several inconsistent insensitive parameters 
at the same time. As an example presented in Figure 5c, 
when varying the parameters of IKK activation (ka_51), 
Complex I inactivation (kd_55) and Complex II building 
(ka_28) individually, the critical dose is merely changed 

by 7.5%, 7.5% and 5%, respectively. However, if we 
vary the two insensitive parameters, ka_51 and kd_55 
simultaneously, the critical dose is significantly changed 
by 17.5%. If we additionally consider the insensitive 
parameter, ka_28, the critical dose will be further changed 
by 22.5%. This result supports the viewpoint that cancers 
require the accumulation of a number of oncogenic 
mutations. Each mutation adds a certain advantage to 
increase cancer incidence, which is strongly correlated 
with the total number of divisions of the normal cells [52]. 
The co-occurring mutations could adequately explain 
the inconsistency of insensitive parameters. But, for the 
inconsistent sensitive parameters (the gray region in 
Figure 5b), such as the degradation rate of RIP1 (kd_4) 
and IKK (kd_35), variation of multiple parameters can 
hardly explain it. Therefore, some other factors may 
contribute to this inconsistency.

As current experimental data reveal only partial 
biologically realistic PPIs, we therefore speculate that 
another factor for the inconsistency may be due to the 
missing PPI in the signaling network model. To test 
our hypothesis, we discuss some possible interplay in 
the signaling network. Here we explore whether the 
apoptosis module could suppress or active the survival 
module. Consequently, we focus primarily on the 
interactions between NFκB and caspases which are the 
core proteins in the corresponding modules. We first 
propose a negative feedback loop of caspase8 on NFκB 
which may enhance apoptosis. Approach of adding 
the negative feedback loop is described in the section 
of Model and Methods. The biochemical parameter 
knegative is chosen as 0.6 amol-1s-1 in this modified model. 
Parameter sensitivity of the modified model is presented 
in right columns of Figure 5a & 5b. Apparently, one 
can notice that, compared to the results with the 
original model in left columns of Figure 5a & 5b, 
the parameters sensitivity are scarcely influenced. The 
disparity is emerged in the gray region. Surprisingly, 
two parameters, the IKK degradation rate (kd_35) and 
IKK inactivation rate (ka_52), actually corresponding to 
non-mutation genes, which are defined as the sensitive 
parameters in the original model, become insensitive in 
the modified model (marked in green stripes in the right 
column of Figure 5b). Changes in Figure 5b indicate 
that, after adding the negative feedback, the model 
parameter sensitivity shows better consistency with the 
corresponding mutated genes. This result favors our 
hypothesis that a negative feedback loop of caspase8 on 
NFκB may be included in the signaling network.

To systematically discuss the possible PPIs of 
caspases on NFκB, as shown in Figure 6, we first 
consider the negative and positive feedback loops of the 
three caspases, caspase8, 3, 6 with a quite broad range 
of feedback strength. Figure 6 indicates that additional 
negative feedback can decrease the initial time of cell 
death (Figure 6a). The greater the feedback strength is, 
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the earlier the cell dies. Whereas the positive feedback 
loop decreases the steady state level of the executioner 
caspases (Figure 6b). The greater the positive feedback 
strength is, the lower the steady state level is. As a result, 
we distinguish the different dynamics caused by two 
interaction types, which are supported by the experimental 
observations that cells under different conditions mainly 
present two different respondence with the executioner 
caspases, i.e., the initial time of cell death and the level of 
steady state [53]. As shown in Figure 6 with green dashed 
lines, the reasonable ranges of feedback strength for 
caspases on NFκB are determined by limiting the affected 
range in 20%. As an example, for caspase8, the ranges 
are determined within 10-3~2 amol-1s-1 and 10-6~2×10-5 
s-1 for negative and positive feedback, respectively. Our 

simulations show that, when considering the additional 
feedback loop within the determined range, location of the 
critical dose will be barely changed for both negative and 
positive interactions. The corresponding results are shown 
in Supplementary Figure S4.

Several reports have provided evidences that caspase8 
plays important roles in NFκB activation upon various 
stimuli [54–56]. Nevertheless, during TNF-α-induced NFκB 
activation, the role of caspase8 is unclear yet. To answer 
this question, we consider the new models with additional 
feedback loop of caspase8 on NFκB, and subsequently 
calculate the HDs in the reasonable strength ranges. Since 
the cancer spectra are different, we first focus on the two 
cancers, upper aerodigestive tract and breast, as examples 
for discussion. The HDs with new models against feedback 

Figure 5: Comparison between parameter sensitivity of the modified model and the corresponding cancer-related 
gene mutation spectrum. a. The consistent subset of parameter sensitivity spectrum of the original model (left) and modified model 
with additional feedback (right). b. The inconsistent subset of parameter sensitivity spectrum of the original model (left) and modified 
model (right). The genes spectra are selected with the combined action of the three mutations. The gray region in (b) corresponds to 0 
combined mutation, i.e. only 1 mutation out of three genes. Parameter sensitivity spectrum is not significantly influenced after considering 
the additional feedback except two parameters. In the gray region, two former inconsistent sensitive parameters (ka_52 and kd_35) become 
insensitive, resulting in consistent with the gene mutation spectrum. c. Comparison of parameter changes in isolation and co-occur. Three 
inconsistent insensitive parameters (marked in green), ka_51, kd_5 and ka_28, are changed at the two and three co-occur, respectively, 
resulting in a significantly accumulated influence on the change of critical dose (marked in red).
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strength are plotted in Figure 7. Note that the green dashed 
lines represent the HD with the original model for the two 
cancers, resulting in the HDs of 58 and 52, respectively.

As shown in Figure 7a with the red line, the HD 
for new models are scarcely influenced with increasing 
negative feedback strength at the weak strength range 
(10-3 amol-1s-1< kcaspase8-negative < 2×10-2 amol-1s-1) for breast 
cancer. However, at the relatively strong strength range 
(2×10-2 amol-1s-1 < kcaspase8-negative < 4 amol-1s-1), the majority 
of the HDs are smaller than that of the original model. 
This tendency indicates that the parameter sensitivity 
of new model show better consistency with the mutated 
genes for breast cancer. In the case of upper aerodigestive 
tract cancer, a similar tendency could also been observed 
in the strength range of 2×10-1 amol-1s-1< kcaspase8-negative < 4 
amol-1s-1, as shown in Figure 7a with the blue line. Note 
that our results show that these ranges are insensitive to 
the cut-off value.

Nevertheless, the tendency is not observed for the 
model with positive feedback. As shown in Figure 7b, 
compared with the original model, the HDs of new 
models with positive feedback are hardly influenced in the 
reasonable strength range for the two cancers. We therefore 
predict that, in both cancer cells, the initiator caspase, 
caspase8, could act as an inhibitor of NFκB activation in 
the signaling pathway through possible feedback loops.

Having discussed the case of caspase8, we are 
interested in the possible feedback of caspase3 on NFκB 
activation. In this case, the appropriate strength ranges 
are determined at 10-1~102 amol-1s-1 and 10-6~10-3 s-1 
for negative and positive feedback loops, respectively. 
Similarly, we calculate the HDs with the new models 

for the two cancers. Corresponding results are presented 
in Figure 7c and 7d, which are similar as the case of 
caspase8. As given in Figure 7c, HDs for new models 
with negative feedback are smaller than for the original 
model at the ranges of 2 amol-1s-1 < kcaspase3 < 102 amol-1s-1 
for breast cancer and 8 amol-1s-1 < kcaspase3 < 102 amol-1s-1 
for upper aerodigestive tract cancer, respectively. Whereas 
considering the new models with positive feedback, the 
HDs are barely influenced (Figure 7d).

Likewise, simulations are further carried out for 
caspase6, whose role in NFκB regulation has not yet 
been reported. Similar results of HD against coupling 
strength of feedback loops on NFκB are also obtained (see 
Supplementary Figure S2 in the Supporting Information). 
As a fact, the caspase3, caspase6 and caspase8 are tightly 
coupled to constitute a caspase module in the signaling 
network, and thus similar effects of feedback loops on NFκB 
should be naturally expected for these three caspases.

Besides the two cancers, we also calculate the 
corresponding HDs for the other 7 cancers (including liver, 
oesophagus, ovary, pancreas, thyroid, haematopoietic and 
lymphoid tissue and kidney) in Supplementary Figure 
S5 and Supplementary Figure S6. Apart from pancreas 
cancer, the results are consistent with above conclusion. In 
consequence, our discussion clearly shows that the caspases 
family proteases (caspase3, 6, 8) may jointly inhibit  
activation of the survival module core part, NFκB, through 
some PPIs to prevent the anti-apoptotic genes expression. 
This result further reveals that the apoptosis module is not 
merely restrained by the survival module as previously 
reported. In addition, it could also fight back to guarantee 
the strong and efficient pro-apoptotic activity in cells.

Figure 6: Effects of the two type feedback loops on apoptosis pattern. a. Negative feedback loop of caspases on NFκB decreases 
the initial time of apoptosis. Black, red and blue lines represent the change of apoptosis initial time with the negative feedback strength 
of caspase8, 3 and 6 on NFκB, respectively. b. Positive feedback loop of caspases on NFκB decreases the steady state level of execution 
protein. Black, red and blue lines represent the change of steady state of caspase3 with the negative feedback strength of caspase8, 3 and 6 
on NF-κB, respectively. The green dashed lines correspond to the 20% decrease of the corresponding pattern, which are used to determine 
the reasonable strength region for the caspases.
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DISCUSSION

Based on a systematic discussion of the TNF-α 
signaling network model, we first evaluate how cell fate 
responds to TNF-α stimulus and define a critical dose to 
describe the TNF-α threshold to cause cell apoptosis. By 
using a previously established method [49], we evaluate 
how the parameters modulate the critical dose of TNF-α 
and obtain the parameter sensitivity spectrum of the 
signaling network. Then, we observe a strong correlation 
between synonymous mutations and parameter sensitivity 
of the critical dose, providing an evidence of synonymous 
mutations in cancer development. Finally, through discussing 
such correlation, we propose a possible negative feedback of 
caspases on NFκB, suggesting a competition of apoptosis 
module with survival module in the signaling network.

Synonymous mutations in cancer development

Over 50 human genetic diseases have been associated 
with synonymous mutations so far [18] and 5-10% of human 
genes are estimated to contain at least one harmful region 
because of synonymous mutations [57]. By employing the 

cancer-related mutations database, our study indicates that, 
compared to the two promised pathogenic mutations (i.e., 
nonsense and missense mutations), synonymous mutations 
show similar correlations with the parameter sensitivity 
of the signaling network, which renders the apoptotic 
dysfunction, providing the potential similar effect size of 
cancer association.

Our results are analogous to the previously statis-
tical data [13] that non-synonymous SNPs (nsSNPs) 
and sSNPs shared similar likelihood and effect size for 
disease association by conducting a survey across 21429 
associations between diseases and SNPs. The strong 
association observed in our study indicates synonymous 
mutations could cause cancer. The possible mechanism 
is that synonymous mutations could affect the speed and 
accuracy of genes translation, the stability of mRNA 
and so on. Such a modulation subsequently changes the 
biological functions of related proteins, corresponding 
to the parameter variations in the signaling network. 
Variations for sensitive parameters could cause a 
significant increase of the critical dose of TNF-α to 
enlarge the cells survival region, ultimately facilitating 
oncogenesis and tumour progression.

Figure 7: HD as a function of coupling strength after considering feedback loops. a. The negative and b. positive feedback 
loops of caspase8 on NF-κB considered in the model, respectively. c. The negative and d. positive feedback loops of caspase3 on NF-κB 
considered in the model, respectively. Green dashed lines and red/blue rhombuses represent the HDs without and with considering the 
corresponding feedback loops, respectively.
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However, the network-based dynamic analyses 
ignore the structural details of proteins interactions 
and therefore we cannot clearly distinguish the causal 
molecular mechanism between the three mutations. A 
most recent study using molecular dynamics simulation 
has successfully provided the causal molecular mechanism 
underlying the correlation between parameter sensitivity 
of signaling network and missense mutations [50]. Thus, 
to prove the strong correlation between synonymous 
mutations and parameter sensitivity, the corresponding 
structural modulation of proteins at molecular basis should 
be further investigated in the future.

Inhibition of caspases on NFκB

Previous studies have used genetic interaction 
correlation [58], phenotype similarity [59], phenotype 
correlation [60] and so on to predict PPIs. Actually, 
proteins often have intricate physicochemical dynamic 
connections, and interactions are condition-dependent. 
Thus, systematic approaches are needed and the interactions 
should be determined in a certain signaling pathway upon 
certain stimulus. Here, through coupling network dynamics 
with cancer mutations database, we propose that the 
apoptosis module could compete with the survival module. 
Specifically, we predict that the typical executioner caspases 
(caspase3, 6) and the typical initiator caspase (caspase8) 
could inhibit the survival module through negative 
feedback loops on NFκB, which may provide efficient 
pro-apoptotic activities in cells. Practically, growing 
experimental observations supported this predictions. 
Specifically, as a direct evidence, caspase3 could cleave 
the NFκB subunit p65/RelA [61–63], thus blocking the 
survival module activation and facilitating apoptosis. As an 
indirect evidence, caspase3 could cleave IkBa, generating 
a cleavage fragment to serve as a constitutive inhibitor of 
NFκB [64, 65]. Besides, caspase3 could also block NFκB 
activation by mediating activation of IKK [66].

Nevertheless, the role of caspase8 in mediating 
NFκB activation is controversial. A key role for caspase8 
in TRAIL-, TCR-, dsRNA- and MDP-induced NFκB 
activation in various cell types has been claimed [67–70]. 
These observations implied that caspase8 could exhibit 
a positive feedback loop on NFκB. However, such 
opposite experimental results indicated that, during the 
stimulation of TNF-α, caspase8 cleaves RIP1, resulting 
in the abrogation of NFκB activation [71–73]. These 
experiments showed that caspase8 mediates NFκB 
activation in a stimulus-specific manner. In this paper, our 
study is based on the TNF-α signaling pathway, and the 
result is supported by the experiments which suggested 
caspase8 could indirectly suppress NFκB activation 
through cleaving RIP1. For caspase6, our results indicate 
that it may play a similar role as caspase3 and capase8 in 
inhibiting NFκB activation, which has not been reported 
with current experiments.

Overall, as shown in Figure 8, we predict that, in the 
TNF-α signaling pathway, the initiator caspase (caspase8) 
and the executioner caspases (caspase3, 6) which are tightly 
coupled to be a caspase module may directly or indirectly 
inhibit NFκB activation to suppress the expression of anti-
apoptotic genes. Such a suppression provides a potential 
mechanism to convert cells from survival to apoptosis. 
Thus, the cancer cells with inactivating caspases mutations 
might interdict not only the normal apoptosis process, but 
also the caspase-mediated NFκB inactivation. However, it is 
uncertain whether the caspase-mediated NFκB inactivation 
is the primary action of the apoptosis module on the survival 
module. Additional studies are needed to identify the other 
crucial proteins in the apoptosis module, such as FADD, 
TARDD and PARP, which might provide more possible 
potential targets for cancer therapy and prevention.

Limitations of the network signaling modeling

There are several assumptions involved in our study. 
For example, one major assumption is that the model 
parameter sensitivity is related to gene mutations. By 
conducting bifurcation analysis, Chen et al. have studied 
the effect of parameter variation on dynamic properties 
and have successfully revealed the correlation between 
oncogenic mutations and parameter sensitivity in the 
apoptotic pathway that responds to DNA damage [49]. 
Such a conclusion serves as inspiration for us to assume 
that the fatal gene mutation should be typically related to 
sensitive parameters in the model.

Another major assumption is that the proposed 
positive and negative feedback loops could contribute 
to protein production and degradation. In the NFκB 
signaling network model [74] proposed by Hoffman et al., 
it has been suggested that the production and degradation 
reactions could be employed to reflect the positive and 
negative interactions, respectively. Besides, we also 
assume to choose ΔCd≥10%·Cd as the criterion in our 
analysis. For this assumption, we have drawn the ROC 
curves and calculated the corresponding Youden’s indexes 
in Supplementary Figure S3, which suggests that the 10% 
cut-off rate could be employed.

As a fact, several limitations in this study need to be 
elaborated. Firstly, in the present study, we use a simplified 
network model to conduct our discussion. Such a network 
could not fully achieve the biologically realistic signaling 
pathway, as well as a precise predication. Therefore, we 
could just achieve a general, instead of a detailed conclusion. 
Nonetheless, the simplified model could still qualify the 
main features of the signaling pathway at the modular and 
molecular levels, such as the NFκB and caspase3 activation 
response to TNF-α stimulation (see Figure 2). To further 
validate our prediction, a comprehensive network model 
with the extended proteins, such as the cIAP, Nemo, 
Bcl-2, t-bid and so on, in the signaling pathway should be 
established in the further study.
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Secondly, as cancer is a very complex genetic 
disease, numbers of cancer mutated genes have not yet 
been fully identified. Some genes which are currently 
thought to be without mutation could perhaps be 
identified with mutation in the future. Besides, whether 
the identified gene mutations are actually required for 
tumor development is not been determined. Driver- and 
passenger-mutations are the present point of view in 
cancer research [75]. Thus, the cancer-related mutations 
database does not provide sufficient information for 
our comparison by now. The prediction will be more 
convictive with a more precise database hereafter.

Finally, the corresponding rule of gene mutations 
with specific parameters is also simplified in our 
discussion. The full-information of each mutation on 
the network model parameters is not currently available. 
Mutation in one gene may impact multiple aspects of 
the role of the protein in the network, such as the protein 
functionality, binding capacity, or phosphorylation 
efficiency, and therefore should correspond to different 
parameters. The question is that it is still unclear 
whether one gene mutation could impact all, several or 
just one aspect of the protein. Therefore, owing to the 
limited information and the structural details of protein 
interactions, some important factors are not well-
considered and the predication perhaps is not precise. 

However, the main goal of our study is to provide a 
possible causal mechanism of synonymous mutations in 
cancer development and to discuss the possible interplay 
in the signaling pathway. A more accurate comparison 
and convinced discussion including those factors should 
be conducted in the future work.

Nevertheless, in this paper, we predict the possible 
PPI by searching for a smaller HD between parameter 
sensitivity of signaling network and cancer-related 
mutation spectrum. We suggest that such searching 
approach can be applied to predict the missing interplay 
in other signaling networks for further experimental 
verification.

Theories of cancer beyond gene mutation

The somatic mutation theory has been the prevailing 
paradigm in cancer research for the last 50 years [2]. It 
main premise claims that most cancers are caused by 
DNA mutations which alter the genes that regulate cell 
normal function. As a result, the great majority of modern 
cancer researches focus on studying various pathways that 
control the cancer cells to grow and spread and attempting 
to develop inhibitors to those pathways from the viewpoint 
of cancer mutations. Although there are many remarkable 
achievements by now, many facets of cancer still remain 

Figure 8: Proposed role of apoptosis versus survival modules in the signaling network. Both the initiator and executioner 
caspases could jointly inhibit NF-κB activation upon TNF-α stimulus, providing a strong and efficient pro-apoptotic activity in cells.
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indecipherable. Therefore, cancer itself cannot been fully 
explained by mutations alone and many other theories 
have been proposed, including the Metabolic theory 
[76], the immunostimulation theory [77], the tissue 
organization field theory [78] and the speciation theory 
[79]. From the viewpoint of regulatory network dynamics, 
Ao et al. proposed that the normal and cancer cells can be 
thought of as two different states of the molecular network 
[80]. Overall, to provide more effective treatment, the 
viewpoint of cancer should be diversification rather than 
gene mutations alone.

MATERIALS AND METHODS

Network description and construction

The TNF-α signaling network, which governs 
cell fate, has been extensively studied over the past 
decades [34, 81, 82]. The balance between cell survival 
and apoptosis is mainly attributed to two modules, the 
survival module and the apoptosis module. In this study, 
we discuss a regulatory network model of the TNF-α 
signaling pathway proposed by Schliemann et al. [83], 
which comprises above two linked modules. A schematic 
representation of the regulatory network model is depicted 
in Figure 1. Upon TNF-α binding to its receptor, TNFR1 
and other three proteins (TRADD/TRAF2/RIP1) are 
recruited to form Complex I, which is the pedestal for 
activation of the survival and the apoptosis modules [34, 
84]. On one hand, Complex I is essential for activating 
IKK. In resting cells, NFκB is sequestered in cytoplasm 
by association with IκBα. Activated IKK stimulates 
the phosphorylation of IκBα, resulting in the release of 
NFκB. Subsequently, the released NFκB translocates into 
nucleus, binds to DNA and then induces the transcription 
of numerous anti-apoptotic genes, such as FLIP and 
XIAP. One the other hand, Complex I also converts to 
Complex II, which contains TRADD, FADD and pro-
caspase8. Pro-caspase8 becomes activated in Complex 
II, eventually resulting in the activation of caspase3 in 
the apoptosis module. Several proteins, including BAR, 
caspase6 and PARP, have also been implicated in the 
regulation of apoptosis. In short, the core signal of cell 
survival is NFκB, which induces the expression of anti-
apoptotic genes; while the cell apoptosis mainly depends 
on the activity of caspases, such as caspase8 (the initiator 
caspase) and caspase3 (the executioner caspase).

Approach of network modeling by using ordinary 
differential equations (ODEs) is well established and has 
been widely used to quantitatively understand the cellular 
regulatory behavior [48, 74, 85, 86]. Here, based on above 
TNF-α signaling pathway, the constructed network model 
consists of 47 components, 88 reactions and 106 kinetic 
parameters. The cell state is described by the component 
concentrations (C1, C2, …, C47), and the biochemical 
reaction rates are dependent on these concentrations and 

the kinetic parameters (k1, k2, …, k106) according to the law 
of mass action. The model is formulated as a set of coupled 
ODEs, describing the time evolution of concentrations of 
proteins and complexes in terms of the following general 
equation:

dC dt JA AB Bν= Σ ⋅

where dCA/dt is the concentration changing rate of 
component A with time. JB represents the rate of reaction 
B, and vAB denotes the element of stoichiometric matrix 
[87] that links the reaction rates of JB with component 
A. The 106 kinetic parameters have been determined by 
fitting the experimental data. Detailed description of the 
model can be obtained from the Biomodels database as 
MODEL1112210000. Differences between transient 
and sustained TNF-α stimuli were performed in both 
experiments and simulation [83]. Since this signaling 
pathway presents a faster response to sustained TNF-α 
stimulation, we mainly consider the sustained stimulus in 
our model.

Parameter sensitivity and cancer-related 
mutations database

The model is given with a set of fixed parameters 
and the effects of parameter variations on the dynamic 
properties are not evenly distributed. According to the 
model dynamics, a critical dose (Cd) of TNF-α can be 
defined to separate the cell fate between survival and 
apoptosis. To determine the parameters which have a 
significantly impact on the critical dose, single-parameter 
sensitivity analysis is conducted by varying all parameters 
+/- 20% from its default value. The increase of the 
critical dose means a larger threshold for cell apoptosis, 
which is likely to become cancer cell. Thus we focus on 
the parameter change (increase or decrease) which can 
increase the critical dose and record the corresponding 
increase (ΔCd). If the increase of the critical dose is 
shifted by a large amount, such parameter is marked as the 
sensitive parameter. In detail, we assume that ΔCd ≥10% 
·Cd corresponds to sensitive parameters, while ΔCd <10% 
·Cd corresponds to insensitive parameters. The reason for 
choosing 10% is given in Supplementary Figure S3.

It has been suggested that there is a correspondence 
between gene mutations and specific parameters changes 
in the signaling network model [49]. In the case of 
association, dissociation, degradation and enzymatic 
processes, the relevant parameter changes are likely related 
to corresponding gene mutation. In other words, if any one 
of the protein genes mutates, the relevant parameter in the 
biochemical reactions will be modulated. We exclude the 
parameters related to the protein production process, which 
are likely related to the gene amplification and deletion. As 
a result, there may be a relationship between the cancer-
related mutations and the parameter sensitivity for the 
critical dose of TNF-α. To dissect this possible relationship, 
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the three point mutations of 9 cancers (including upper 
aerodigestive tract , breast, liver, oesophagus, ovary, 
pancreas, thyroid, haematopoietic and lymphoid tissue and 
kidney) are chosen: missense, synonymous and nonsense 
mutations. The spectra of cancer-related mutations are 
collected from Catalogue of Somatic Mutations in Cancers 
(COSMIC) [88] which is a major resource of genetic 
variants in different cancer types.

Boolean variable and hamming distance

To discuss the possible relationship between 
parameter sensitivity and cancer-related mutations, one 
has to consider the following limitations. Although an 
increasing number of mutated oncogenic genes have been 
identified and are being updated in the database, current 
data in the COSMIC are still not precise. Furthermore, as 
stated in Ref. [49], the parameters do not have one-to-one 
correspondence with gene mutations and the “mutation 
hot spot” cannot be quantitatively defined. Thus, for a 
robust comparison, we employ Boolean variable to reflect 
the number of mutated gene samples. In detail, we use 
“0” (false) to denote no mutation for the corresponding 
parameter, and “1” (true) to denote a mutated sample for 
the corresponding parameter. Similarly, Boolean variable 
is also carried out to reflect the parameter sensitivity: with 
“0” to denote insensitive parameters, and “1” to denote 
sensitive parameters. With such Boolean variables, the 
relationship between parameter sensitivity and cancer-
related mutations can be simply measured by Hamming 
distance (HD), which is defined as the difference between 
two binary strings.

Construction of the missing PPIs

If there is an interaction between two proteins in the 
network, the corresponding biochemical reaction should 
be proposed and the corresponding ODEs of the network 
model should be considered. In this study, different types 
of interactions between caspases and NFκB are considered, 
including positive and negative feedback loops. Here, we 
assume that positive feedback loop contributes to the 
protein production. For instance, if a positive feedback 
loop of caspase3 on NFκB is considered, biochemical 
reaction (1) should be added:

NFkBcaspase3φ  → ;  (1)

Based on the law of mass, the ODE to describe the 
change of NFκB concentration should be given as:

d NFkB
dt

k caspasepositive
[ ]

= ......+ *[ 3];  (2)

Here, [X] represents the concentration of protein X, 
······ represents the terms interacting with other proteins, 
kpositive is the biochemical parameter, kpositive*[caspase3] is 

the changing term related to the positive feedback loop of 
caspase3 on NFκB.

Similarly, we assume that negative feedback loop 
contributes to the protein degradation. If a negative 
feedback loop of caspase3 on NFκB is considered, 
biochemical reactions (3) should be added:

;3NFkB caspase φ →  (3)

Then the ODE should be given as:

[ ]
=……- *[ 3]*[ ];

d NFkB
dt

k caspase NFkBnegative  (4)

Here, knegativeis the biochemical parameter and 
knegative*[caspase3]*[NFκB] is the changing term related to 
the negative feedback loop of caspase3 on NFκB.

Concerns to predict missing PPIs

Prior to discussing the possible missing PPIs, 
some concerns need to be clarified: First, how to predict 
a possible PPI based on the comparison of correlation 
between parameter sensitivity and mutated genes. For a 
robust comparison, we use Hamming distance (HD) to 
define the correlation of Boolean variables. Therefore, 
after considering an additional PPI in the network, if 
HD becomes decreasing, it means that the parameter 
sensitivity shows better consistency with the mutated 
genes. In this case, we predict such an interaction may 
possibly be favored. However, if HD increases or is not 
influenced, we propose such an interaction may not exist.

The second concern relates to how to characterize 
the impact of different interaction types on the signaling 
network dynamics. Previous experimental study [53] 
revealed that cells under different conditions mainly 
present two different respondence with the executioner 
caspases, i.e., the initial time of cell death and the level of 
steady state. Here, in our analysis, by checking the change 
of the initial time of cell death and the steady state level 
of the system, we characterize the impact of positive and 
negative feedback loops of caspases on network dynamics.

The last concern is to determine the reasonable 
range of feedback strength. In principle, one should notice 
that the dynamic properties of the network should not be 
largely affected after considering the additional feedback. 
Accordingly, we determine the strength range by limiting 
the affected range in 20%.
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