
RESEARCH ARTICLE BIOPHYSICS AND COMPUTATIONAL BIOLOGY
ECOLOGY

Robots as models of evolving systems
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Experimental robobiological physics can bring insights into biological evolution. We
present a development of hybrid analog/digital autonomous robots with mutable
diploid dominant/recessive 6-byte genomes. The robots are capable of death, rebirth,
and breeding. We map the quasi-steady-state surviving local density of the robots onto
a multidimensional abstract “survival landscape.” We show that robot death in complex,
self-adaptive stress landscapes proceeds by a general lowering of the robotic genetic
diversity, and that stochastically changing landscapes are the most difficult to survive.

robotic biology | evolution | adaptable landscapes | stochastic dynamics

Robotics has now reached the stage where artificial life and evolution can be studied in a
physical system where robots can be used to ask complex evolutionary questions (1, 2).
Further, there have been pioneering efforts to introduce genetics and biology into robotic
systems.

The hybrid analog/digital robot community we have created has a collective, evolving
behavior and, by design, has a generality which spans analogies from bacterial chemotaxis
(3) to many-body soft-matter physics (4), evolutionary biology (5), and multicell collective
states (6, 7). We suggest that stochastic time and multiple-chemical chemotherapy rather
than a periodic time and monodrug course would target the high mutation rates of cancer
cells (8) and be less punishing to cells that have the normal very low mutation rates that
natural selection favors in the absence of high stress.

The resource landscapes are three overlapping red–green–blue (RGB) intensity maps
generated on a 4.16-m × 4.16-m light-emitting diode light board. The time- and space-
varying RGB intensities generated on the board represent three resource landscapes; a
given resource landscape is associated with a given color. Although the robots locally
deplete resources, the local resource shadow generated by the presence of a robot gradually
fades once the robot moves away.

The robots move only in response to local resource gradient created at their position on
the light board, which, together with the resource dynamics, creates a complex field drive
locomotion mechanism (3). The many-body aspect of the resource landscape gradients
is extremely dynamic, since the robots locally deplete the resources; the result is that the
gradients are a strong function of both external drivers and the local density of the robots
(9). Fig. 1 presents the basic flow of the robot swarm on the landscape.

One of the fundamental innovations which distinguishes our robots from more
conventional robots is the closed loop between the mutable genes which control color
response phenotype and the four downward looking RGB sensors which determine local
color resources and physical response on an interactive dynamical landscape. The sensors
are at opposing quadrants on the base of the robot and detect the RGB colors and
corresponding intensities from the RGB light board.

An overhead camera determines resource depletion. The presence of a robot on the
light board is detected by the camera; this results in a signal sent to the light board
controller to progressively decrease the color intensity in an area around the robot. This
process has consequences: It provides motility for the robots as they move away from their
own developing shadow. The consumption of resources by the robots forms the collective
shadow [S], which follows a relaxation dynamics,

∂t [S] =−1

τ
[S] +

robots∑
C , [1]

where C is the consumption rate of each robot centered around its position, and τ is
the fixed recovery rate of a resource. In our experiments, τ is a fixed value. The resource
value is given by I = IBG − [S] so that, when a robot consumes resources and leaves, the
environment will slowly recover to the set background IBG . Details of this can be found
in SI Appendix, sections 1–4.

Significance

We present a fully realized
adaptive resource landscape with
diploid three-gene robots
presenting interacting roles of
population dynamics, mutations,
breeding, death, and birth.
Although modeling and theory
serves as a guide here, the
inherent complexity of our
robobiology world makes it an
experiment in exploring rules of
Darwinian natural selection at a
level difficult to simulate. We find
that the lower the genetic
diversity, the lower the survival
probability of the robot
population. We propose that
diploid gene robots can act as
avatars of diploid mammalian
cells to explore novel programs of
administration of drugs.
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Fig. 1. (A) Depiction of the complex interactions of the robots. Ribbon: The robots move via self-generated field drive on a resource landscape generated
by an underlying LED light board, which the robots sense. Field drive is the self-generated movement of the robots in response to local resource depletion.
(B) The 4.16-m by 4.16-m LED light board with robots across an RGB nested set of landscapes. (C) The hardware of a robot. (Upper Left) Infrared LEDs and sensors
are used for gene exchange. (Upper Right) Two wheels driven by independent motors move the robot over the LED light board, while four RGB downward-
looking sensors measure local light board intensities. (Lower Left) RGB LEDs display the state of the 6-byte genome to an overhead camera. (Lower Right) Basic
information flow: The downward-looking sensors control wheel movement, the infrared LEDs/sensors control gene exchange, and the upward-transmitting
RGB LEDs send the genome state to the overhead camera. (D) The information logic flow for a given robot to determine resource consumption. The upward-
transmitting RGB LEDs are read by an overhead camera, which then sends information to a computer which dims the appropriate resource color(s) due to the
dominant gene(s), and controls resource recovery. (E) Hardwired computation of resource gradients by a robot. (F) The basic hardwired manner in which a robot
moves in response to resource gradients (field drive). (G) The recovering resource “shadow” generated by a moving robot on a white homogeneous landscape
due to field drive. (H) The basic repulsive interaction due to field drive between two robots. (I) Soft resource-driven “collision” between two field drive robots on
a white landscape.

The robot’s phenotype is determined by a 6-byte diploid
genome: (R1, G1, B1) and (R2, G2, B2). Each byte (gene) consists
of 8 bits: 1 bit is reserved to flag if it is dominant (1:active) or
recessive (0:nonresponsive), as is shown in Fig. 2. Only dominant
genes can exhibit sensitivity to the resource gradients.

The remaining 7 bits (0000000 to 1111111) determine the
sensitivity to the color associated with that gene and hence the
velocity (a two-dimensional vector) with which they climb out
of a resource hole following resource gradients. The quantitative
relationship between genes and robot velocities is as follows: Three
pairs of genomes respectively control robot sensitivity to three
different resources (R/G/B), which are represented by Rgene ,
Ggene , and Bgene ,

Rgene =
R

(flag)
1 R

(value)
1 + R

(flag)
2 R

(value)
2

2× 127
,

Ggene =
G

(flag)
1 G

(value)
1 +G

(flag)
2 G

(value)
2

2× 127
,

Bgene =
B

(flag)
1 B

(value)
1 + B

(flag)
2 B

(value)
2

2× 127
.

[2]

Here the quantities with superscript “(flag)” take value zero for
recessive gene and value one for dominant gene, and the quantities
with superscript “(value)” take the value of the remaining 7 bits,
ranging from 0 to 127 in decimal.

The vector velocity is determined then by the genotype and
localized resource gradient,

�V =
Vmax

3
× (Rgene∇Ired +Ggene∇Igreen + Bgene∇Iblue) .

[3]

We discovered an unexpected pleiotropy (one gene–multiple
phenotypes) in our robot response. We found that pleiotropy in
our genomes results from the finite spectral linewidths of the RGB
LEDs in the light board which result in the RGB detectors in the
robot base responding not only to the primary color (for example,
the red detector seeing not only red but also blue and green).
SI Appendix, section 6 gives details of the robot construction and
maps out this cross-channel spectral bleeding.

There is no predetermined software algorithm to our robot
phenotype (10). Rather, the phenotype is collective, emergent,
and hardware driven, yet can be characterized as partly selfish and
partly a form of altruism.

The selfish aspect is to exploit (consume) resources where you
are, and move to find more resources as you deplete the ones you
found, by following the positive gradients of resources created
by the robot and other nearby robots (3). Robots which cannot
escape from a resource hole die and lose their genes.

The altruism is as follows: If you find a dead robot, copy 1/2
your genome to the dead robot; two successive donations from
nonidentical robots gives rise to a rebirthed daughter robot. The
altruism here is the survival of the robot species. Since our robots
cannot, unfortunately, reconstruct themselves from basic materials
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Fig. 2. (A) Genes of the robots. (Left) Cartoon of the 6-byte genome and analogy to diploid human chromosomes. (Right) The 6-byte genome. The first bit
determines dominance or recessive nature, while the remaining 7 bits determine sensitivity to the underlying color on the LED light board. The translational
speed of the robot is proportional to the 7-bit number times the state of the dominance/recessive flag. (B) (Left) Green resources untouched by a recessive green
gene are consumed once a mutation makes the green gene dominant, giving rise to a black resource hole. (Right) Mutation rates increase with lower levels of
resources. (C) Pictorial gene exchange diagram as a dead robot (left) meets an active robot and haploid gene delivery occurs. (D) Images of the rebirth of a dead
robot (center) due to two subsequent haploid gene deliveries.

(11), rebirth is our way to prevent inevitable extinction, as Fig. 2
shows. The rebirthed robot is thus genetically related to its parents.
It is absolutely possible for us to design different reproduction
modes, including asexual rebirth (one cell simply gives genes to
a dead one), or just exchange genes between two alive robots, or
any combination of these.

Given the plethora of choices, and since we are most interested
in fundamental evolution dynamics, we chose the normal mating
scheme of (parent-1) + (parent-2) = parents + progeny. The
evolution dynamics of asexual reboots of dead robots by a single
“parent” is interesting and will be explored in a later paper. De-
tailed descriptions for robot–resource environment interactions
can be found in SI Appendix, section 4.

We correlate resource stress with mutation rates (12): More
resource stress gives rise to more mutations/time. Thus the stability
of a gene in the robot is connected with the resource level: The
dimmer the color intensity, the higher the mutation rate of the
gene which is associated with that color. This allows a robot to
escape, in principle, from a low-resource dim region even if the
7-bit binary number associated with that color is low, and hence
there is a low sensitivity to light gradients: The enhanced mutation
rate and the already low value of the gene implies a greater
probability of drawing a high value and escaping. Likewise, a robot
in a bright area will have a low mutation rate; in effect, a robot with
low sensitivity (low 7-bit binary number) is rewarded by being
more likely to stay in that region until the inevitable depletion of
resources happens. Then, there is always the risk of death.

The effective “metabolic” rate of resource consumption by the
robots for a given color is fixed to a level proportional to the local

intensity of that color but is independent of the sensitivity of the
robot to that color in terms of field drive. In principle, only a robot
with all “pure” recessive genes (rr, gg, bb) cannot consume any
resources. It will stay still and then either mutate to a dominant
gene or die after 5 s. This is the reason why a robot with all recessive
genes will die even in a white environment. It has no sensitivity
to any resource, so it simply sits in one place, fatally. Thus a robot
with more dominant genes will consume more resources, and it
will move faster than one with fewer dominant genes. A robot
with only recessive genes will consume nothing, remain stationary,
and die.

As we noted, there is color leakage (pleiotropy) in this system:
The RGB LEDs are not pure monochromatic light sources, so
that, for example, a blue sensor on the robot will detect some
fraction of the green light board even if no blue light is present; the
net result is that robots do not necessarily die in an inappropriate
environment. The biological equivalent for this is that recessive
genes are not necessarily entirely recessive (13, 14).

Of course, if all the robots die, the population becomes ex-
tinct. Hence, breeding to produce an alive robot is essential.
The genes of a reborn robot must come from two different alive
robots (every robot has a unique ID). Fig. 3 summarizes robot
death, rebirth, and random genome dynamics, also showing the
power of our ability to obtain detailed genomic dynamics events.
However, we cannot easily show, graphically, the underlying stress
landscape drivers and the motions of the robot over the land-
scape for this segment. Details for robot–resource environment
interactions and genomic dynamics can be found in SI Appendix,
sections 4–6.
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Fig. 3. (A) Interchange of genomes due to death and rebirth between Ntot = 50 robots in the course of an experiment. A blue line indicates gene exchange has
occurred. (B) The complex and unpredictable nature of how long a given robot stays alive even in a uniform, white landscape as a function of time. (C) Detailed
local snapshot of a single robot’s genome dynamics starting with a death event at t = 0 min. The robot becomes alive after two separate haploid donations by
robot 2 at t = 2 min and robot 22 at t = 7 min. The next death events for this robot occur at t = 31 min and t = 50 min. Note that the robot does nine haploid
donations and many single-bit mutations over the course of this time sequence. No mutations can occur while a robot is dead.

A Theoretical Guide to the Experiments

A theoretical model is used to provide a rough guide of where, in
the vast parameter space, we should set our robot codes to probe
for interesting results.

Five critical parameters that control the survival of our bioin-
spired system of robots are 1) the rate of mutation rm per gene
bit, 2) the rate of gene exchange to create offspring at rate rb
which is the only way to increase the number of alive robots
in our system, 3) the basal rate at which the robots consume
resources, 4) the recovery rate τ of resources in the absence of
a robots, and 5) td , the time it takes to die when a genetic
configuration stays “bad.” We fix td , since it is basically intrinsic,
defined dimensionless parameters cm = rm td and cb = rbtd , and
examined how survival changes with cm and cb .

As we discuss in SI Appendix, section 7, the metric of survival
S = Nst/Nc(Fmax )—where Nst is the stationary number of
alive robots and Nc(Fmax ) is the maximum carrying capacity
of robots given the maximum amount of resources Fmax in the

environment—represents the serviceability of the robot popula-
tion (15). For an environment with abundant resources, Nc =
Ntot in which Ntot is the total number of robots available. In
a fixed white environment, when the space of “good” genetic
variations has a much larger volume than that of “bad” genetic
variation, the survival is approximately

S ≈ 1− βg→be
−βb→gcm

[
cm
cb

]
, [4]

where βg→b and βb→g are constants. Note that S cannot be
a negative value; thus, when Eq. 4 gives an unphysical result
S < 0, then the physical value should be set toS = 0. The survival
value S is minimum when cmutate is equal to the critical value
ccrm = 1/βb→g ; therefore, we call the region around the line
cm = ccrm the mutation meltdown valley. On the two sides, we
call the region on the cm � ccrm side the unchanged hill and
call the region on the cm � ccrm side the undead hill. For the
region of parameter space that leads to S = 0 (which means the
population goes extinct), we call this the extinction swamp. In
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D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 2
02

.1
07

.2
18

.2
26

 o
n 

M
ar

ch
 1

7,
 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

20
2.

10
7.

21
8.

22
6.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120019119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120019119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120019119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120019119/-/DCSupplemental
https://doi.org/10.1073/pnas.2120019119


Fig. 4, we qualitatively show the survival S surface (which we call
the success landscape) as a function of the dimensionless mutation
coefficient cm and the dimensionless breeding coefficient cb . The
experimental results are given in SI Appendix, section 7.

Thus a simplified theoretical analysis shows three possible
distinct stationary states for the robot community: surviving with
death stabilized (where the resource is abundant, and the station-
ary density of alive robots are only limited by how fast rebirth
can happen to balance out spontaneous deaths due to stochastic
resource fluctuations), surviving with resource depletion (where
the stationary density of alive robots is directly bounded by the
amount of resources), and total extinction (where the population
will eventually die, due to either the death rate being too high,
the rebirth rate being too low, or the resource recovery being too
slow). Note that this is just a guide for a spatially homogeneous
external environment with no externally driven time dependence.
There are actually many surprises in this robot world.

Experimental Robot Evolutionary Survival
Landscapes

We have carried out three different landscape evolution experi-
ments to test to what extent our robot community is able to evolve
and adapt to externally driven stresses.

Experiment 1 involves no external time dynamics to resources,
and a white landscape with equal resources of red green and
blue landscapes. This is the simplest possible landscape, with no
explicit time-dependent external drive to the ecology, like Earth’s

equatorial climate. However, with time, the landscape will become
spatially and temporally complex due to the heterogeneous nature
of the robot genotypes, their motile resource exploitation, and
their interactions, which result in locally preferential depletion of
different resources. Movie S1 shows robot dynamics on an initial
flat, white landscape versus time.

Fig. 5A shows the evolution of a survival landscape as a function
of time for a fixed (white) landscape. As the theoretical guide
predicted, there exists a mutational rate which leads to minimal
survival and near-extinction of the robot community as time
progresses. Although some level of mutations is necessary for a
population to evolve, presumably, living systems would be driven
to minimize mutation rates to the extent it is possible to avoid
the mutational risk of extinction in a low-stress environment that
occurs with increasing mutations (16).

Experiment 2 involves a spatially uniform but periodically
changing landscape. Here we drive the resource landscape with
monotonically changing colors, representing, in effect, a well-
mixed imposed landscape chemostat evolution experiment (17),
but different from the classic chemostat experiment in that the
initially homogeneous landscape can be locally modified by the
robots. A fixed diameter circle of light homogeneously changes
color from red to green to blue. The resource circle changed
color with a 4,320–time step period for each color change; see
Fig. 5B. Movie S2 shows mutation and breeding on a periodically
changing color landscape.

As we have noted, it is only when robots have both mutations
and gene exchange that a robust robot population can exist within

Fig. 4. The theoretical surviving fraction of robots (S, which we call success) landscape as a surface function of the dimensionless mutation coefficient cm and
the dimensionless breeding coefficient cb for a fixed white resource landscape. The critical line corresponds to cm = αb→g . There are four main regions: the
mutation meltdown valley, the extinction swamp, the unchanged hill, and the undead hill. Our theory predicts which positions, indicated by four triangle data
points (where rm ∝ P0, and rb depends monotonically on the number of available breeding ports), will have corresponding success fractions of robots in the
experiments.
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Fig. 5. (A) Surviving robot number versus time for a homogeneous white landscape which has no external time changes. (B) Images of robot positions for a
periodically changing resource landscape: RGB. (C) Surviving robot number versus time and mutation rate for a periodically changing environment.

a simple harmonically changing well-mixed landscape. The robot’s
adaption to dynamic environment is revealed by the phenotypes
responding to the detail RGB ingredients of the resource land-
scape. However, since the environment is changing with time,
stress now opens up the mutational meltdown narrow valley and
widens it.

Experiment 3 involves stochastic spatial and time-dependent
landscapes. To explore truly complex robot resource dynamics,

unlike a typical biological laboratory well-mixed scenario, we
created a stochastic, spatially fragmented complex landscape. The
details of the algorithm used to create this landscape can be
found in SI Appendix, section 8. Movie S3 shows robots mutating
and breeding on a stochastic landscape, and Movie S4 shows the
comprehensive introduction of the robot and experiments.

Fig. 6 shows the number of surviving robots versus time on
a stochastic, fragmented landscape. Clearly, as the stress imposed

Fig. 6. (A) Images of robot positions for a stochastic landscape which changes pattern randomly with time. (B) Surviving robot number versus time and
mutation rate for a stochastic landscape with a stochastic time dependence.
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on the robots gets increasingly harder to predict versus time, it
becomes increasingly harder for the robots to evolve. The valley
of death increases dramatically in width as a function of mutation
rate.

As we show in Fig. 6, for the case of pleiotropic genes, P0 = 0
is actually the sole optimum survival point in a stochastic envi-
ronment with the parameters chosen. Pleiotropy inhibits chasing
moving resources which vanish, but it can also result in a frag-
mented landscape in leaving robots isolated for too long a time
and failing to undergo gene exchange, which is critical for survival.

In our toy robot organisms, the three genes are all equivalent in
terms of phenotype: They just respond basically to different colors.
Yet the system evolves, so what is different in surviving populations
that makes them successful, since the phenotypes cannot evolve?
We assumed that the evolutionary diversity must be in the relative
numbers of bits set high within the genes. A useful metric for this
kind of genetic diversity is the Shannon entropy of the dominant
genes S (18, 19),

S (t) =−
phenotype∑

i

pi(t) ln[pi(t)], [5]

where pi(t) is the time-dependent probability of finding one of
the 23 − 1 = 7 possible living phenotypes (red, green, blue, red
+ green = yellow, green + blue = cyan, red + blue = magenta,
and red + green + blue = white) as the landscape changes. If all
the dominant genes in a collection of N robots are exclusively
“green” eventually, for example, then the final Shannon entropy
is zero, and there is no dominant gene diversity on the resource
landscape. The time dependence of the Shannon entropy is closely
related to the Fisher information, since the Fisher information
is basically the variance of the Shannon entropy (18). We fit
the measured time dependence of S (t) to a logistic equation in
Fig. 7A. We choose the logistic equation primarily because of its
close connection to ecological population dynamics, namely, the
role of the population growth rate R and carrying capacity K of an
ecology (20), possibly related to our robot genome rate of change
and limiting genomic diversity.

Under, then, the assumption that, with time, the initial Shan-
non genetic entropy S (0) will evolve to a limiting entropy S (∞),
we determined, by curve fitting the Shannon genetic entropy
change ΔS = S (∞)− S (0),

S (t) =
S (0)× S (∞)

S (0) + ΔS × e−t/τ
, [6]

where τ is the relaxation time of S (t). Fig. 7 presents the
results primarily for the stochastic system. Note that, as would
be expected, in the absence of mutations, the Shannon entropy
does not change.

Our evolution analysis indicates two important and surprising
points connected to mutation rates: 1) The lower the final Shan-
non entropy, that is, the lower the genetic diversity, the lower
is the survival probability of the robot population. 2) Static or
periodically changing environments basically see no net change
in genomic diversity with time, even with changing intrinsic
mutation rates Po , but a stochastically changing environment
drives genetic diversity down with time.

Discussion

Our results suggest the basic hypothesis that, while it is key for
robots to mutate, exchange genes, and breed to avoid extinction,
high mutation rates can be an extinction driver in a sufficiently

Fig. 7. (A) Example of the logistic curve fit of the Shannon genetic entropy
S(t) versus time for Po = 0.1. (B) Surviving robot population (red) and logistic
curve fit of the total Shannon entropy change (black) ΔS as a function of
basal mutation rate Po for a stochastic landscape. (C) Correlation between
Shannon entropy change S(t) and robot survival for three different landscape
dynamics, as a function of different intrinsic mutation rate Po.

stochastic ecology. The number of robots is large (Ntot = 50)
but not infinite; finite rather than infinite numbers of agents in
biology is a meaningful and extremely important constraint in
biology (21), especially in fragmented landscapes.

We have attempted to explore complicated bioinspired resource
dynamics with real physical robots instead of a more conventional
digital approach (agent-based computer simulations), such as was
used in the pioneering Sugarscape simulation (22, 23). There are
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fundamental differences between these two methodologies, such
as the overwhelming combinatoric load (at what point does the
number of robots and their interactions become impossible to
simulate?) (24), the distinctions between smooth analog time and
discrete time in the flow of differential equations (25), and the
general breakdown of algorithms in the presence of noise (26). A
concrete example is chronological ambiguity in digital operations,
because the combination of rules to represent simultaneous pro-
cesses in discrete time is intrinsically problematic: There usually
is a specific order (nonparallel) to how the update of variable
values is done. This results in the unsolved replication problem
encountered in agent-based simulations, where observations can-
not always be faithfully recreated based on just the physical analog
description alone (27, 28).

From the success landscape (Fig. 4), we conjecture that absorb-
ing phase transitions (29) play an important role in the emergent
behavior of this robotic system. In the extinction swamp, the
system has crossed an absorbing phase transition boundary, where
the mutation-driven fluctuating state of some “alive” robots is no
longer stable, and get absorbed into the state of “dead” robots.
Absorbing phase transitions are usually associated with strongly
non-Gaussian behavior and diverging time scales (30–32), and
there is, of course, room for more exploration here beyond the
scope of this paper.

There is a potential clinical aspect to this work based upon our
surprising results from stochastic landscapes. From the start of the
design of this technology, we viewed our robots as cancer cells,
and that the resource landscape over which they move represents
changing nutrients, and that chemotherapy is represented by

changing the resource landscape in such a way that the cells,
although they are capable of mutation and reproduction, cannot
sustain a viable population.

From our results, we predict that a stochastic time and
multiple-chemical chemotherapy rather than a periodic time and
monodrug course would target the high mutation rates of cancer
cells (8) and be less punishing to cells that have the normal very
low mutation rates that natural selection favors in the absence of
high stress. At present, this is based on a rather abstract stochastic
resource landscape, as is clear from Fig. 6. Clearly, we will have
to design our resource landscape to more closely resemble a solid
tumor, with gradients in stress from an outside perimeter, and
time-clocked flow of high stress chemotherapy at the perimeter.

Data Availability. There are no data underlying this work.
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