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Abstract
Surface enhanced Raman spectroscopy (SERS) detection in microfluidics is an interesting topic
for its high sensitivity, miniaturization and online detection. In this work, a SERS detection in
microfluidics with the help of the Ag nanowire aggregating based on dielectrophoresis (DEP) is
reported. The Raman intensities of molecule in microfluidics is greatly enhanced in the naturally
generated nanogaps of Ag nanowire aggregating modulated by DEP. Firstly, the influence of
DEP voltage and time on Ag nanowire aggregating is investigated to figure out the optimal
condition for SERS. And then, the SERS intensities of methylene blue and rhodamine6G at
various concentration with high reproducibility and uniformity are studied. Furthermore, the
experiment data demonstrate this DEP–SERS system could be repeated used for different
molecule detections. At last, the SERS of melamine is measured to explore its application on
food safety. Our work anticipates this nanowire assisted repeatable DEP–SERS detection in
microfluidics with high sensitivity could meet the emerging needs in environmental pollution
monitoring, food safety evaluation, and so on.

Supplementary material for this article is available online
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1. Introduction

As an analytical tool to increase the intensity of Raman sig-
nals, surface enhanced Raman spectroscopy (SERS) has
attracted wide attention among the public [1, 2]. Typically,
the noble metal nanostructures (i.e. Au, Ag, Cu) are active
SERS materials to provide the enhancement for Raman sig-
nals [3, 4]. The SERS phenomenon is primarily a result of

localized surface plasmon resonance [5, 6]. LPRS is gener-
ated by the excitation of collective electron oscillations within
the metallic nanostructure caused by incident light, which
leads to a huge enhancement of the optical local-field on the
nanoscale. Both theoretical and experimental studies have
also demonstrated that electromagnetic hot spots for mole-
cular detection can be formed by introducing plasmonic
nanostructures or using SERS substrates inside microfluidic
channels in nanoscale gaps between nanostructures [7–9].
With ongoing progress in the development, the application of
SERS has been extended to various fields, including
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biomedical detection and environmental safety, due to its
ultra-sensitivity, rapid response time, and the ability to gen-
erate molecular vibrational fingerprint [10–13]. Among these
applications, SERS measurements coupled with microfluidic
devices have emerged several useful benefits over conven-
tional macro-environments. For instance, by combining SERS
with microfluidic devices, researchers can miniaturize their
laboratory setup for SERS quantification, control the move-
ment of particles in the channels, and decrease the assay time
and procedures, which provides portability and lower pro-
duction cost [12, 14–16].

Currently, in the research of SERS in microfluidics, most
enhanced substrates consisted of metal nanostructure is
directly fabricated in channel. For example, Kang et al
reported a photoinduced synthesis method for fabricating Ag
nanoparticles embedded on the surfaces of ZnO nanowires
integrated into the microfluidic system, which promises the
detection of glucose solutions with various concentrations
[17]. Bai et al directly fabricated a 3D microfluidic SERS
system based on femtosecond-laser-assisted wet etching for
the real-time detection of toxic substances in microchannel
[18]. Leem et al presented the formation of Ag thin films in a
microfluidic channel while the substrate was heated by the
polyol method [19]. In addition, other methods, such as
photoreduction [16], and optothermal effect [20] have been
successfully used to fabricate enhanced substrates. However,
it is difficult for the target molecules to reach the enhanced
hot spots on the metal surface (�100 nm) of enhanced sub-
strates fabricated in channel, causing some difficulty for
SERS detection. Because molecules with low concentrations
are flowing in several hundred-microns channel. Therefore,
many researchers adopt bonding methods to enable molecules
to reach hot spots on the surface of metal structures, which
form the simple bioconjugation and simultaneously realize
detection of specific molecules [21–23]. As a result, the SERS
substrate might be hard to flush (e.g. presence of -HS groups)
and ulteriorly bring significant disturbance to the subsequent
SERS signal and analysis no matter for the same molecules or
other molecules. It is negative for the extending of diverse
applications. In other words, these SERS substrates are irre-
versible after chemical reaction or physical absorbance with
analytes, limiting their recyclability. Recently Phan-Quang
et al included Ag plasmonic colloidosomes (the mixture) into
a microfluidic channel for online sequential SERS detection.
The method resolves the poor signal reproducibility and sta-
bility [24]. However, the sensitivity of the substrate is rela-
tively insufficient. Multiple reports show that the greatest
enhancements come from specific hot spots generated by
multiparticle coupling aggregation [25–27]. Chrimes et al
controlled the spacing of Ag nanoparticles in order to promote
the aggregation of nanoparticles to produce strong hot spots
by dielectrophoresis (DEP). The system demonstrated reusa-
bility and high sensitivity of the platform and repeatability of
the measurements [3]. Therefore the combination of DEP-
microfluidic and SERS offers unique advantages, opening up
new opportunities in various research fields.

In this paper, we presented an active microfluidic system
that traps Ag nanowires by the DEP forces as they flow in a

liquid channel for SERS detection of molecules. We have paid
attention to suspended nanowires in microfluidic channel. The
rapid aggregation of Ag nanowires can form a 3D network
structure between electrodes in the microfluidic channel, which
generates the dense nanogaps and further leads the intense
SERS high-density hot spots compared with nanoparticles. Due
to close plasmon coupling between branches, the 3D network
structures of Ag nanowires act as excellent substrates for SERS
detection. Moreover, after releasing the external voltage, the
nanowires with analytes can be flushed away. The mode of
trapping-releasing-trapping enables the SERS detection of var-
ious analytes at the same location. More importantly the effects
of external DEP voltage and time on nanowires aggregating
were investigated to get the optimal capture condition. Appro-
priate capture conditions enable SERS detection to be com-
pleted with a very small amount of sample and achieve
comparatively fast detection. The device was repeatedly used to
detect various chemical molecules with various concentrations.
Ag nanowires trapping process under DEP is reversible,
achieving the reusability of the system and repeatability of the
measurements. Finally we further presented the detection of
melamine in milk based on this platform, demonstrating its
application on food safety. These results indicate the micro-
fluidic system prepared by the DEP method can function as
SERS substrates for high-sensitive measurements with excellent
performance.

2. Methods and experiment

2.1. Material and sample preparation

Silver nitrate (AgNO3, 99.99%), polyvinyl pyrrolidone (PVP,
Mw=58 000, K29-32), rhodamine6G (R6G), methylene blue
(MB), melamine (C3H6N6,�99.9%), and tween 20 (C58H113O26,
viscous liquid) were purchased from Shanghai Aladdin bio-
chemical Polytron Technologies Inc. (Shanghai, China). Ethylene
glycol (EG) was purchased from Chengdu Kelong Chemical
Reagent Factory (Chengdu, China). All chemicals were used
directly without further treatment. High-purity deionized water
(18.25 MΩ cm) was produced using Aquapro AWL-0502-H
(Aquapro International Company LLC., Dover, DE, USA).

The Ag nanowires were chemically synthesized accord-
ing to a previous synthetic method [28]. The synthetic Ag
nanowires colloid was diluted 10 times using the ethanol
solution for all subsequent experiments. A solution of ethanol
with Tween 20 was ethanol with the addition of 0.1% w/w
tween 20. Semi-skimmed milk (Yili, China) was bought from
a local supermarket. Ag nanowires solution and probing
molecules solution with different concentrations were mixed
in a ratio of 1 to 1. In addition, the solvent of melamine
aqueous solution is hot water at a temperature of 90 °C.

2.2. Preparation of the DEP microfluidic device

The microfluidic chip with electrodes on the top and bottom
glass surfaces was employed and its function for nanowires
manipulation was also demonstrated in this study. The
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microfluidic chip was integrated by the microfluidic channel
and 3D microelectrodes. The design of the DEP microfluidic
device was based on previously published work [29]. The
design of the microchip is depicted in figure 1(a). And two
holes with the same diameter of 1 mm were drilled on the top
glass, which adopted an integrated structure with only one
entrance and one exit for more convenience and rapid
detection.

2.3. DEP aggregation process of Ag nanowires

The microfluidic channel was washed with the prepared
tween 20 ethanol solution prior to use. In doing so, we can
prevent Ag nanowires from adsorbing on poly-
dimethylsiloxane (PDMS) for better capture. Next step was to
introduce Ag nanowires solution into the microfluidic channel
at a low flow rate of 1 μl min−1 via a syringe pump (LSP01-
2A, Longer Pump). And a function generator (Agilent
33250A) was used to generate a sinusoidal wave with an
adjustable frequency and voltage through the wire connec-
tions to the microelectrodes. The DEP microfluidic device is
applied at a frequency of 20 MHz in the whole experiment.
Then the traveling of Ag nanowire was monitored under a
microscope and recorded by a CCD camera (Olympus DP73).
Finally, the microchannel was again cleaned with the pre-
pared ethanol solution and was pumped at a high flow rate of
100 μl min−1 to remove the DEP-captured Ag nanowires
rapidly. In this work, the whole experiment was carried out at
room temperature and atmospheric pressure.

2.4. Characterization

The DEP–SERS measurements were performed with a home-
built setup depicted that was equipped with a 632.8 nm and 10
mW excitation laser in figure S1 (supplementary data is avail-
able online at stacks.iop.org/NANO/30/475202/mmedia). A
He–Ne laser (Melles Griot) and a spectrometer (iHR550, Horiba,
equipped with a charge-coupled device camera) were integrated
to an inverted optical microscope (Olympus IX73). All of the
Raman spectra were collected under the same ambient condi-
tions. The signals were obtained with one scan every 20 s in all
measurements. For acquiring images and videos, an optical
microscope coupled to a CCD camera was used. The surface
morphology of Ag nanowires trapped by DEP in microfluidic
channel was obtained by a field-emission scanning electron
microscopy (SEM, TESCAN MIRA 3 FE).

3. Results and discussion

3.1. Preparation DEP–SERS sensor

Figures 1(a) and (b) show the completed structure of micro-
fluidic microsystem comprising 3D electrodes. Furthermore,
the explosion view of 3D electrode structure in the micro-
fluidic system is shown in the inset of figure 1(b) (glass-
PDMS-glass). As is shown in figure 1(c), the SERS detection
of DEP–SERS sensor involves three main steps: (i) washing
the microfluidic channel with the prepared ethanol solution,
(ii) incorporating the mixture of Ag nanowires and target

Figure 1. (a) The physical diagram of the DEP microfluidic system. The whole red small boxes represent the magnified area. (b) The
completed structure diagram of microfluidic microsystem comprising electrodes. The inset is a explosion view of 3D electrode structure in
the microfluidic system (glass-PDMS-glass). (c) The schematic diagram of experimental process.

3

Nanotechnology 30 (2019) 475202 T Ge et al

http://stacks.iop.org/NANO/30/475202/mmedia


molecules with different concentration into the microfluidic
channel, (iii) aggregating the mixture at a certain AC voltage
and frequency, and then achieving SERS detection. The AC
voltage is applied to electrodes to generate the required spatial
electric field gradient [7, 29, 30]. In the non-uniform electric
field, the Ag nanowires in the vicinity of the electrode can be
attracted toward it by DEP force and the Ag nanowires attached
to the electrode can generate strong local electric field gradients,

thereby attracting other nanowires. A simulation of the electric
field distribution in the nanostructure displayed that the stron-
gest gradient of electric field square occurs at the edges of
electrodes in figure S2 (supplementary data).

3.2. Trapping of Ag nanowires by DEP

Figure 2 displays the SEM images of Ag nanowires between
electrodes under the same conditions when an electric field is

Figure 2. (a) and (d) The optical microscope images of the microeletrodes. (b), (c), (e), and (f) The SEM images of Ag nanowires aggregating
between the electrodes with different multiples. The whole red small boxes represent the magnified area.

Figure 3. The relation between the AC voltage, the aggregation time and acreages of the black area on electrodes covered by captured Ag
nanowires (flow rate: 1 μl min−1; frequency: 20 MHz). (a) The relation between the AC voltage and acreages of the black area on electrodes
covered by captured Ag nanowires in 10 min. The inset is a comparison of the acreage of the black area at 2 and 10 V. Error bars are obtained
with 3 measurement points. (b) The relation between the aggregation time and acreages of the black area on electrodes covered by captured
Ag nanowires at 10 V. The inset is a comparison of the acreage of the black area at 1, 6, 11 and 12 min. Error bars are obtained with 3
measurement points.
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present or absent. When the AC voltage is applied to elec-
trodes, Ag nanowires would concentrate between the micro-
electrodes as shown in figures 2(d), (e). It is clear that the
aggregated Ag nanowires would generate the dense nanogaps,
leading the intense SERS high-density hot spots between the
electrodes due to close plasmon coupling between branches of
3D network structures. In addition, Ag nanowires could not

be attached to the electrode in the absence of AC voltages, as
given in figures 2(a)–(c). By contrast, it was easier to promote
the agglomeration of Ag nanowires by DEP, thus promoting
the increase of SERS hot spots.

Further, to find the excellent performance and the best
conditions for Ag nanowire aggregating, we monitored the
DEP captured process when changing the DEP voltage and

Figure 4. SERS performance of a DEP–SERS system using R6G as a probe molecule. (a) SERS spectra of R6G with concentrations ranging
from 10−14 to 10−10 M on the DEP–SERS system. (b) SERS intensity at 1505 cm−1 as a function of R6G concentrations. Each point was
obtained from the average of 6 measurements. (c) Reproducibility of the SERS spectra of 10−11 M R6G collected at 10 randomly selected
spots on the same DEP–SER system. (d) Signal intensity of the 1505 cm−1 from 10−11 M R6G collected at 10 randomly selected spots on the
same DEP–SERS system.
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time, and then calculated the black area on electrodes covered
by trapped Ag nanowires using the programming with
Matlab. It should be pointed out that the AC voltage and DEP
captured time would restrict each other and influence the
aggregation of Ag nanowires. To understand more clearly
how each factor affects Ag nanowires aggregating, the one
variable remains the same and the other one is changed. The
3D microelectrodes are energized by applying with a fre-
quency of 20 MHz, trapping Ag nanowires by DEP at a low
flow rate of 1 μl min−1. Figure 3(a) illustrates the black area
versus voltage at the aggregation time of 10 min. More
remarkably, the area covered by Ag nanowires over the
electrodes increases with the increase of the AC voltage. The
darker area clearly indicates the superior DEP trapping effi-
ciency of the 3D electrodes with a higher voltage in the inset
of figure 3(a). The reason is that the greater the DEP force is
generated with the increase of AC voltages. Due to the lim-
itation of AC power supply voltage range, the maximum
voltage of this work is 10 Vp–p. Then, if the AC power is
turned off during the capture process, Ag nanowires aggre-
gating on the electrodes will slowly and automatically dis-
perse and flow out of the microchannel instead of attaching to
the electrodes. The entire process containing capturing, dis-
persing and cleaning is shown in video S1 (supplementary
data). It greatly turns out that our DEP microfluidic system is
recyclable and reusable, because of the reversibile process of
Ag nanowires aggregation process under DEP, which
demonstrates high superiority.

Figure 3(b) shows that the area covered by Ag nanowires
climbs up as the DEP captured time increases at the same
10 V. After 6 min, the area covered by Ag nanowires
increases more and more slowly. To further investigate this
matter, we investigated the variations of the depth of the black
area in 1, 6, 11 and 12 min, respectively in the inset of
figure 3(b). We find the trapped Ag nanowires tends to
saturate on the device after 6 min. We chose a capture time of

6 min, because the nanowires increased fastest in the first
6 min, which has created high-density hotspots for SERS
detection. And it also shortened the detection time and reduce
the number of aqueous samples used in the whole experiment.
Compared the curves in figures 3(a) and (b), it could be
concluded that the effect of DEP voltage and time on Ag
nanowires aggregating has the similar trend at the same flow
rate and frequency. The optimal conditions for Ag nanowires
aggregating and the SERS detection are at the voltage of 10
Vp–p and capture time of 6 min. In this experiment, all mea-
surements were carried under the same concentration of Ag
nanowires and under the same equipment.

3.3. SERS performance of the on-chip self-assembly
nanowires

Here, using DEP captured Ag nanowires as an enhanced
substrate, we evaluated the performance of our DEP–SERS
system for the molecular sensing by measuring the SERS
responses of R6G on the surface. Notably, to improve the
diffusion process of mixing Ag nanowires and analyte
molecules, the off-chip mixture was implemented using vor-
tex for 30 s. An AC potential of 10 Vp–p (peak-to-peak volt-
age) at 20 MHz was applied to the electrode leads. And the
solutions were pumped at a flow rate of 1 μl min−1. The
capture condition of 10 V and 6 min allow us to gain SERS
spectrums with a tiny volume of liquid sample. So the SERS
spectra of R6G molecules were shown in figure 4(a). All
SERS spectrums obtained from the mixture of Ag nanowires
and R6G ranging from 10−14 to 10−10 M, exhibit character-
istic vibration performance at 605, 767, 1174, 1307, 1356 and
1505 cm−1. Meanwhile, as the concentration of R6G mole-
cules decreases, the Raman signals become weaker and
weaker. The strongest SERS band at 1505 cm−1 is selected
for comparison of R6G at different concentrations. At first, at
a high R6G concentration of 10−10 M, a SERS intensity of
7572±1289 counts is obtained. As R6G molecules solutions
are gradually diluted, the SERS intensities reduce and ulti-
mately reaching 329±169 counts at a R6G concentration of
10−14 M. Therefore, the detection limit of our DEP–SERS
system is determined to be 10−14 M of R6G. The reason for
such high sensitivity detection is that R6G molecules placed
in the enhanced region of nanogap SERS hot spots and Ag
nanowires with R6G molecules are captured between elec-
trodes by DEP. Under the same condition, SERS signals of
the pure substrate are not obtained at different time, indicating
that the surfactant on the nanowire does not affect the SERS
performance of our DEP–SERS system (see figure S3 in
supplementary data).

Furthermore, quantitative comparison of the SERS
intensities of R6G concentrations shows that a linear SERS
response is obtained within the range 10−5

–10−13 M at the
peak of 1505 cm−1, as shown in figure 4(b). The linear
relation at 1505 cm−1 can be expressed quantitatively as
I=2598.7logC+34382.2, where C is the R6G concentra-
tion expressed in molar concentration and I is the SERS
intensity level. And R is the correlation coefficient of linear
regression, and R square is equal to 0.96, indicating that this

Figure 5. SERS spectra of the R6G and MB with different
concentrations obtained alternately on the same position without
spectral interference between the analytes.
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curve has a high degree of linear fitting. This result is con-
sistent with the above detection limit studies on a homo-
geneous SERS substrate, emphasizing the applicability of our
DEP device for quantitative detection of analyte molecules.
Figure 4(c) shows that with the exception of high sensitivity,
the DEP–SERS system provides good spatial uniformity and
repeatable SERS signals at a low concentration of 10−11 M
R6G. Meanwhile, as shown in figure 4(d), a relative standard
deviation of the signal changes is less than 6.4% in 10 time
measurements at 1505 cm−1, which indicates that the SERS
signals enhanced by the DEP–SERS substrate demonstrate
excellent reproducibility. The stability of our DEP–SERS
system for detect the organic molecules is shown in figure S4
(supplementary data).

3.4. Recyclability of the DEP–SERS system

The recyclability of the DEP device was explored by
detecting different kinds of probe molecules alternately. MB
and R6G solution with the different concentrations were used
as the probe molecules, with entirely different SERS major
peaks that could be easily distinguished, as shown in figure 5.
Firstly, 10−6 M MB solution was injected into the substrate in
the microfluidic channels to detect SERS signals (line 1).
After washing by the prepared ethanol solution at a high flow
rate of 100 μl min−1 for 10 min, a featureless SERS spectrum
was observed at the second measurement. Then for the third
SERS detection on the same position, 10−10 M R6G solution

was similarly introduced into the microfluidic channel under
all the same conditions, the SERS spectrum of which was
presented as line 3 in figure 5. This cycle was repeated several
times without great changes and shifts of Raman peaks of
both MB and R6G and without spectral interference, illus-
trating the outstanding recyclability of the DEP microfluidic
system. Moreover, the recyclability and reusability character
greatly promote the utilization and lowers the manufacture
cost of the DEP device.

3.5. SERS detection of real samples on the DEP–SERS
substrate

To prove the utilization of the DEP–SERS system in practical
applications, SERS detection of real samples was taken place
on the DEP system using melamine as the target molecules.
Melamine was normally adding to the milk formula to arti-
ficially inflate the protein content. However, the excessive
melamine in milk poses a serious threat to human health,
especially for children. Melamine is difficult to metabolize,
resulting in varying degrees of renal failure, severe or even
death in animals or humans [31, 32]. In fact, the State Food
Quality Supervision and Inspection Center of China stipulates
that the amount of melamine used in infant formula foods
must not exceed 1 ppm, or 2.5 ppm in other foods [33].
Figure 6(a) displays that melamine aqueous solutions with
different concentrations were prepared for a serial SERS
detection on the DEP–SERS system. The characteristic peak

Figure 6. (a) SERS spectra of melamine aqueous solution with concentration ranging from 500 to 0.1 ppm in the DEP–SERS system.
(b) SERS spectra of melamine with different concentrations in milk on the DEP–SERS substrate, Raman spectrum of pure 1 ppm melamine
in milk and the pure substrate.
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of melamine at 678 cm−1 clearly shows the limit concentra-
tion of detection is 0.1 ppm, which is much lower than
national standard (2.5 ppm). Further, by directly adding
corresponding quantitative melamine into milk to form var-
ious gradients melamine solutions, the detection of melamine
in real sample was explored. In figure 6(b), the SERS spec-
trums of melamine in milk with various concentrations on the
prepared substrate were compared with the pure substrate and
melamine in milk without the substrate. The characteristic
peaks of melamine in milk at 678 cm−1 are in sharp contrast
when the substrate is present or absent, verifying the super-
iority of the DEP–SERS substrate on food safety application.
In the absence of melamine on the pure substrate, SERS
spectrum is not obtained in the Raman window, which further
confirms that PDMS does not significantly interfere with the
high sensitivity application of our DEP–SERS system. Then,
the detection limit is as low as 0.1 ppm under the exper-
imental conditions, being far lower than national standard
(1 ppm). The presented microfluidic plasmonic sensor provides
a powerful analytical tool for detection of melamine in milk.

4. Conclusions

In summary, this work demonstrated a DEP–SERS micro-
fluidic system with the help of Ag nanowires aggregating
based on DEP for detection. The optimal condition for SERS
detections is obtained by investigating the influence of DEP
voltage and time on Ag nanowires aggregating. The SEM
images also reveal that Ag nanowires are actively manipu-
lated by the electric field to generate naturally the high-
density nanogaps for SERS detection. This device can be used
for the analysis of R6G and MB SERS intensities with high
reproducibility and uniformity. The detection limit of the
DEP–SERS microfluidic system is determined to be 10−14 M
of R6G. In addition, this microfluidic system can allow the
reproducible detection and accurate quantification of analytes
with different concentrations. The advantage of substrates
prepared in this method is reproducibly dense distribution of
hotspots on the surface, increasing the possibility that an
target analyte will experience the largest enhancement.
Moreover, the nanowires aggregating process under DEP is
reversible, allowing the device to be reused for different
applications. With all capabilities of the DEP–SERS sub-
strate, we anticipate that it could be developed to meet the
emerging needs in environmental pollution monitoring, food
safety evaluation, and so on.
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